Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 241
Filtrar
1.
Am J Physiol Cell Physiol ; 326(4): C1237-C1247, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38581667

RESUMO

Diabetes alters the function of ion channels responsible for regulating arterial smooth muscle membrane potential, resulting in vasoconstriction. Our prior research demonstrated an elevation of TMEM16A in diabetic arteries. Here, we explored the mechanisms involved in Transmembrane protein 16A (TMEM16A) gene expression. Our data indicate that a Snail-mediated repressor complex regulates arterial TMEM16A gene transcription. Snail expression was reduced in diabetic arteries while TMEM16A expression was upregulated. The TMEM16A promoter contained three canonical E-box sites. Electrophoretic mobility and super shift assays revealed that the -154 nt E-box was the binding site of the Snail repressor complex and binding of the repressor complex decreased in diabetic arteries. High glucose induced a biphasic contractile response in pressurized nondiabetic mouse hindlimb arteries incubated ex vivo. Hindlimb arteries incubated in high glucose also showed decreased phospho-protein kinase D1 and TMEM16A expression. In hindlimb arteries from nondiabetic mice, administration of a bolus dose of glucose activated protein kinase D1 signaling to induce Snail degradation. In both in vivo and ex vivo conditions, Snail expression exhibited an inverse relationship with the expression of protein kinase D1 and TMEM16A. In diabetic mouse arteries, phospho-protein kinase D1 increased while Akt2 and pGSK3ß levels declined. These results indicate that in nondiabetic mice, high glucose triggers a transient deactivation of the Snail repressor complex to increase arterial TMEM16A expression independently of insulin signaling. Conversely, insulin resistance activates GSK3ß signaling and enhances arterial TMEM16A channel expression. These data have uncovered the Snail-mediated regulation of arterial TMEM16A expression and its dysfunction during diabetes.NEW & NOTEWORTHY The calcium-activated chloride channel, TMEM16A, is upregulated in the diabetic vasculature to cause increased vasoconstriction. In this paper, we have uncovered that the TMEM16A gene expression is controlled by a Snail-mediated repressor complex that uncouples with both insulin-dependent and -independent pathways to allow for upregulated arterial protein expression thereby causing vasoconstriction. The paper highlights the effect of short- and long-term glucose-induced dysfunction of an ion channel expression as a causative factor in diabetic vascular disease.


Assuntos
Diabetes Mellitus , Insulinas , Animais , Camundongos , Anoctamina-1/metabolismo , Artérias/metabolismo , Diabetes Mellitus/metabolismo , Músculo Liso Vascular/metabolismo , Receptor de Insulina/metabolismo
2.
Biophys Chem ; 308: 107194, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38401241

RESUMO

The TMEM16/Anoctamin protein family (TMEM16x) is composed of members with different functions; some members form Ca2+-activated chloride channels, while others are lipid scramblases or combine the two functions. TMEM16x proteins are typically activated in response to agonist-induced rises of intracellular Ca2+; thus, they couple Ca2+-signalling with cell electrical activity or plasmalemmal lipid homeostasis. The structural domains underlying these functions are not fully defined. We used a Naïve Bayes classifier to gain insights into these domains. The method enabled identification of regions involved in either ion or lipid transport, and suggested domains for possible pharmacological exploitation. The method allowed the prediction of the transport property of any given TMEM16x. We envisage this strategy could be exploited to illuminate the structure-function relationship of any protein family composed of members playing different molecular roles.


Assuntos
Anoctaminas , Lipídeos , Anoctaminas/metabolismo , Teorema de Bayes , Anoctamina-1/metabolismo , Transporte de Íons , Cálcio/metabolismo
3.
Front Immunol ; 15: 1341209, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38352864

RESUMO

Background: Aminooctylamine (ANO1) plays an oncogenic role in various cancers. However. its role in pancreatic cancer (PC) has rarely been studied. This study investigated the prognostic value of ANO1 and its correlation with the tumor microenvironment (TME) in PC. Methods: Consecutive patients with PC (n = 119) were enrolled. The expression of ANO1 in cancer cells, the expression of fibroblast activation protein (FAP) and alpha smooth muscle actin in cancer-associated fibroblasts (CAFs), and the numbers of CD8- and FOXP3-positive tumor-infiltrating lymphocytes (TILs) were evaluated using immunohistochemistry. The prognostic value of ANO1 and its correlation with CAF subgroups and TILs were analyzed. The possible mechanism of ANO1 in the TME of PC was predicted using the the Cancer Genome Atlas (TCGA) dataset. Results: The expression of AN01 was correlated with overall survival (OS) and disease-free survival. Multi-factor analysis showed that high ANO1 expression was an independent adverse prognostic factor for OS (hazard ratio, 4.137; P = 0.001). ANO1 expression was positively correlated with the expression of FAP in CAFs (P < 0.001) and negatively correlated with the number of CD8-positive TILs (P = 0.005), which was also validated by bioinformatics analysis in the TCGA dataset. Moreover, bioinformatic analysis of the TCGA dataset revealed that ANO1 may induce an immunosuppressive tumor microenvironment in pancreatic cancer in a paracrine manner. Conclusion: ANO1 is a prognostic factor in patients with PC after radical resection. ANO1 may induce an immunosuppressive tumor microenvironment in PC in a paracrine manner, suggesting that ANO1 may be a novel therapeutic target.


Assuntos
Neoplasias Pancreáticas , Microambiente Tumoral , Humanos , Prognóstico , Neoplasias Pancreáticas/patologia , Linfócitos do Interstício Tumoral/metabolismo , Modelos de Riscos Proporcionais , Anoctamina-1/genética , Anoctamina-1/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo
4.
BMC Cancer ; 24(1): 233, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38373988

RESUMO

Head and neck squamous cell carcinoma (HNSCC) constitutes one of the most common types of human cancers and often metastasizes to lymph nodes. Platinum-based chemotherapeutic drugs are commonly used for treatment of a wide range of cancers, including HNSCC. Its mode of action relies on its ability to impede DNA repair mechanisms, inducing apoptosis in cancer cells. However, due to acquired resistance and toxic side-effects, researchers have been focusing on developing novel combinational therapeutic strategies to overcome cisplatin resistance. In the current study, we identified p90RSK, an ERK1/2 downstream target, as a key mediator and a targetable signaling node against cisplatin resistance. Our results strongly support the role of p90RSK in cisplatin resistance and identify the combination of p90RSK inhibitor, BI-D1870, with cisplatin as a novel therapeutic strategy to overcome cisplatin resistance. In addition, we have identified TMEM16A expression as a potential upstream regulator of p90RSK through the ERK pathway and a biomarker of response to p90RSK targeted therapy in the context of cisplatin resistance.


Assuntos
Antineoplásicos , Neoplasias de Cabeça e Pescoço , Proteínas Quinases S6 Ribossômicas 90-kDa , Carcinoma de Células Escamosas de Cabeça e Pescoço , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Proteínas Quinases S6 Ribossômicas 90-kDa/antagonistas & inibidores , Anoctamina-1/genética , Anoctamina-1/metabolismo
5.
J Am Chem Soc ; 146(7): 4665-4679, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38319142

RESUMO

The dysfunction and defects of ion channels are associated with many human diseases, especially for loss-of-function mutations in ion channels such as cystic fibrosis transmembrane conductance regulator mutations in cystic fibrosis. Understanding ion channels is of great current importance for both medical and fundamental purposes. Such an understanding should include the ability to predict mutational effects and describe functional and mechanistic effects. In this work, we introduce an approach to predict mutational effects based on kinetic information (including reaction barriers and transition state locations) obtained by studying the working mechanism of target proteins. Specifically, we take the Ca2+-activated chloride channel TMEM16A as an example and utilize the computational biology model to predict the mutational effects of key residues. Encouragingly, we verified our predictions through electrophysiological experiments, demonstrating a 94% prediction accuracy regarding mutational directions. The mutational strength assessed by Pearson's correlation coefficient is -0.80 between our calculations and the experimental results. These findings suggest that the proposed methodology is reliable and can provide valuable guidance for revealing functional mechanisms and identifying key residues of the TMEM16A channel. The proposed approach can be extended to a broad scope of biophysical systems.


Assuntos
Canais de Cloreto , Cloretos , Humanos , Cloretos/metabolismo , Anoctamina-1/genética , Anoctamina-1/metabolismo , Canais de Cloreto/genética , Canais de Cloreto/química , Canais de Cloreto/metabolismo , Mutação , Transdução de Sinais , Cálcio/metabolismo
6.
Int J Mol Sci ; 25(4)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38396901

RESUMO

TMEM16A is a Ca2+-activated Cl- channel expressed in various species and tissues. In mammalian skeletal muscle precursors, the activity of these channels is still poorly investigated. Here, we characterized TMEM16A channels and investigated if the pharmacological activation of Piezo1 channels could modulate the TMEM16A currents in mouse myogenic precursors. Whole-cell patch-clamp recordings combined with the pharmacological agents Ani9, T16inh-A01 and Yoda1 were used to characterize TMEM16A-mediated currents and the possible modulatory effect of Piezo1 activity on TMEM16A channels. Western blot analysis was also carried out to confirm the expression of TMEM16A and Piezo1 channel proteins. We found that TMEM16A channels were functionally expressed in fusion-competent mouse myogenic precursors. The pharmacological blockage of TMEM16A inhibited myocyte fusion into myotubes. Moreover, the specific Piezo1 agonist Yoda1 positively regulated TMEM16A currents. The findings demonstrate, for the first time, a sarcolemmal TMEM16A channel activity and its involvement at the early stage of mammalian skeletal muscle differentiation. In addition, the results suggest a possible role of mechanosensitive Piezo1 channels in the modulation of TMEM16A currents.


Assuntos
Anoctamina-1 , Canais de Cloreto , Células Musculares , Animais , Camundongos , Anoctamina-1/metabolismo , Anoctamina-1/fisiologia , Transporte Biológico , Cálcio/metabolismo , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Canais Iônicos/metabolismo , Mamíferos/metabolismo , Células Musculares/metabolismo
7.
Sci Rep ; 14(1): 246, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38168913

RESUMO

Chronic obstructive pulmonary disease (COPD) is the 3rd leading cause of death worldwide. Cigarette smoke which has approximately 2-3 µg of Cadmium (Cd) per cigarette contributes to the environmental exposure and development and severity of COPD. With the lack of a cadmium elimination mechanism in humans, the contribution of cadmium induced stress to lung epithelial cells remains unclear. Studies on cadmium responsive miRNAs suggest regulation of target genes with an emphasis on the critical role of miRNA-mRNA interaction for cellular homeostasis. Mir-381, the target miRNA in this study is negatively regulated by cadmium in airway epithelial cells. miR-381 is reported to also regulate ANO1 (Anoctamin 1) expression negatively and in this study low dose cadmium exposure to airway epithelial cells was observed to upregulate ANO1 mRNA expression via mir-381 inhibition. ANO1 which is a Ca2+-activated chloride channel has multiple effects on cellular functions such as proliferation, mucus hypersecretion and fibroblast differentiation in inflamed airways in chronic respiratory diseases. In vitro studies with cadmium at a high concentration range of 100-500 µM is reported to activate chloride channel, ANO1. The secretory epithelial cells are regulated by chloride channels like CFTR, ANO1 and SLC26A9. We examined "ever" smokers with COPD (n = 13) lung tissue sections compared to "never" smoker without COPD (n = 9). We found that "ever" smokers with COPD had higher ANO1 expression. Using mir-381 mimic to inhibit ANO1, we demonstrate here that ANO1 expression is significantly (p < 0.001) downregulated in COPD derived airway epithelial cells exposed to cadmium. Exposure to environmental cadmium contributes significantly to ANO1 expression.


Assuntos
MicroRNAs , Doença Pulmonar Obstrutiva Crônica , Humanos , Cádmio/metabolismo , Anoctamina-1/genética , Anoctamina-1/metabolismo , Células Epiteliais/metabolismo , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , MicroRNAs/metabolismo , RNA Mensageiro/genética , Proteínas de Neoplasias/metabolismo , Transportadores de Sulfato/metabolismo , Antiporters/metabolismo
8.
Pflugers Arch ; 476(2): 211-227, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37979051

RESUMO

Inflammatory airway diseases like cystic fibrosis, asthma and COVID-19 are characterized by high levels of pulmonary cytokines. Two well-established antiparasitic drugs, niclosamide and ivermectin, are intensively discussed for the treatment of viral inflammatory airway infections. Here, we examined these repurposed drugs with respect to their anti-inflammatory effects in airways in vivo and in vitro. Niclosamide reduced mucus content, eosinophilic infiltration and cell death in asthmatic mouse lungs in vivo and inhibited release of interleukins in the two differentiated airway epithelial cell lines CFBE and BCi-NS1.1 in vitro. Cytokine release was also inhibited by the knockdown of the Ca2+-activated Cl- channel anoctamin 1 (ANO1, TMEM16A) and the phospholipid scramblase anoctamin 6 (ANO6, TMEM16F), which have previously been shown to affect intracellular Ca2+ levels near the plasma membrane and to facilitate exocytosis. At concentrations around 200 nM, niclosamide inhibited inflammation, lowered intracellular Ca2+, acidified cytosolic pH and blocked activation of ANO1 and ANO6. It is suggested that niclosamide brings about its anti-inflammatory effects at least in part by inhibiting ANO1 and ANO6, and by lowering intracellular Ca2+ levels. In contrast to niclosamide, 1 µM ivermectin did not exert any of the effects described for niclosamide. The present data suggest niclosamide as an effective anti-inflammatory treatment in CF, asthma, and COVID-19, in addition to its previously reported antiviral effects. It has an advantageous concentration-response relationship and is known to be well tolerated.


Assuntos
Asma , COVID-19 , Camundongos , Animais , Anoctamina-1/metabolismo , Ivermectina/farmacologia , Ivermectina/uso terapêutico , Niclosamida/farmacologia , Niclosamida/uso terapêutico , Anoctaminas/metabolismo , Pulmão/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Cálcio/metabolismo , Inflamação/tratamento farmacológico , Anti-Inflamatórios , Canais de Cloreto/metabolismo
9.
Am J Physiol Lung Cell Mol Physiol ; 326(1): L111-L123, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38084409

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a devastating disease characterized by progressive scarring of the lungs and resulting in deterioration in lung function. Transforming growth factor-ß (TGF-ß) is one of the most established drivers of fibrotic processes. TGF-ß promotes the transformation of tissue fibroblasts to myofibroblasts, a key finding in the pathogenesis of pulmonary fibrosis. We report here that TGF-ß robustly upregulates the expression of the calcium-activated chloride channel anoctamin-1 (ANO1) in human lung fibroblasts (HLFs) at mRNA and protein levels. ANO1 is readily detected in fibrotic areas of IPF lungs in the same area with smooth muscle α-actin (SMA)-positive myofibroblasts. TGF-ß-induced myofibroblast differentiation (determined by the expression of SMA, collagen-1, and fibronectin) is significantly inhibited by a specific ANO1 inhibitor, T16Ainh-A01, or by siRNA-mediated ANO1 knockdown. T16Ainh-A01 and ANO1 siRNA attenuate profibrotic TGF-ß signaling, including activation of RhoA pathway and AKT, without affecting initial Smad2 phosphorylation. Mechanistically, TGF-ß treatment of HLFs results in a significant increase in intracellular chloride levels, which is prevented by T16Ainh-A01 or by ANO1 knockdown. The downstream mechanism involves the chloride-sensing "with-no-lysine (K)" kinase (WNK1). WNK1 siRNA significantly attenuates TGF-ß-induced myofibroblast differentiation and signaling (RhoA pathway and AKT), whereas the WNK1 kinase inhibitor WNK463 is largely ineffective. Together, these data demonstrate that 1) ANO1 is a TGF-ß-inducible chloride channel that contributes to increased intracellular chloride concentration in response to TGF-ß; and 2) ANO1 mediates TGF-ß-induced myofibroblast differentiation and fibrotic signaling in a manner dependent on WNK1 protein but independent of WNK1 kinase activity.NEW & NOTEWORTHY This study describes a novel mechanism of differentiation of human lung fibroblasts (HLFs) to myofibroblasts: the key process in the pathogenesis of pulmonary fibrosis. Transforming growth factor-ß (TGF-ß) drives the expression of calcium-activated chloride channel anoctmin-1 (ANO1) leading to an increase in intracellular levels of chloride. The latter recruits chloride-sensitive with-no-lysine (K) kinase (WNK1) to activate profibrotic RhoA and AKT signaling pathways, possibly through activation of mammalian target of rapamycin complex-2 (mTORC2), altogether promoting myofibroblast differentiation.


Assuntos
Fibrose Pulmonar Idiopática , Miofibroblastos , Humanos , Anoctamina-1/metabolismo , Diferenciação Celular , Cloretos/metabolismo , Fibroblastos/metabolismo , Fibrose Pulmonar Idiopática/patologia , Pulmão/metabolismo , Miofibroblastos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fatores de Crescimento Transformadores/metabolismo , Fatores de Crescimento Transformadores/farmacologia
10.
EMBO J ; 42(24): e115030, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37984335

RESUMO

Agonist binding in ligand-gated ion channels is coupled to structural rearrangements around the binding site, followed by the opening of the channel pore. In this process, agonist efficacy describes the equilibrium between open and closed conformations in a fully ligand-bound state. Calcium-activated chloride channels in the TMEM16 family are important sensors of intracellular calcium signals and are targets for pharmacological modulators, yet a mechanistic understanding of agonist efficacy has remained elusive. Using a combination of cryo-electron microscopy, electrophysiology, and autocorrelation analysis, we now show that agonist efficacy in the ligand-gated channel TMEM16A is dictated by the conformation of the pore-lining helix α6 around the Ca2+ -binding site. The closure of the binding site, which involves the formation of a π-helix below a hinge region in α6, appears to be coupled to the opening of the inner pore gate, thereby governing the channel's open probability and conductance. Our results provide a mechanism for agonist binding and efficacy and a structural basis for the design of potentiators and partial agonists in the TMEM16 family.


Assuntos
Canais de Cloreto , Ativação do Canal Iônico , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Anoctamina-1/genética , Anoctamina-1/química , Anoctamina-1/metabolismo , Ligantes , Microscopia Crioeletrônica , Sítios de Ligação , Cálcio/metabolismo
11.
Adv Sci (Weinh) ; 10(24): e2300881, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37341301

RESUMO

The application of immunotherapy in gastrointestinal (GI) cancers remains challenging because of the limited response rate and emerging therapeutic resistance. Combining clinical cohorts, multi-omics study, and functional/molecular experiments, it is found that ANO1 amplification or high-expression predicts poor outcomes and resistance to immunotherapy for GI cancer patients. Knocking-down or inhibiting ANO1 suppresses the growth/metastasis/invasion of multiple GI cancer cell lines, cell-derived xenograft, and patient-derived xenograft models. ANO1 contributes to an immune-suppressive tumor microenvironment and induces acquired resistance to anti-PD-1 immunotherapy, while ANO1 knockdown or inhibition enhances immunotherapeutic effectiveness and overcomes resistance to immunotherapy. Mechanistically, through inhibiting cancer ferroptosis in a PI3K-Akt signaling-dependent manner, ANO1 enhances tumor progression and facilitates cancer-associated fibroblast recruitment by promoting TGF-ß release, thus crippling CD8+ T cell-mediated anti-tumor immunity and generating resistance to immunotherapy. This work highlights ANO1's role in mediating tumor immune microenvironment remodeling and immunotherapeutic resistance, and introduces ANO1 as a promising target for GI cancers' precision treatment.


Assuntos
Fibroblastos Associados a Câncer , Ferroptose , Neoplasias Gastrointestinais , Humanos , Fibroblastos Associados a Câncer/metabolismo , Fosfatidilinositol 3-Quinases , Proliferação de Células , Proteínas de Neoplasias/metabolismo , Imunoterapia , Microambiente Tumoral , Anoctamina-1/metabolismo
12.
Cancer Res ; 83(11): 1759-1761, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37264829

RESUMO

Metastasis is a key contributor to mortality in patients with cancer. While many regulators of metastasis have been identified, critical targets to prevent and inhibit metastatic tumor growth remain elusive. A recent study in this issue of Cancer Research by Deng and colleagues compared gene expression signatures between primary esophageal squamous cell carcinoma tumors and metastatic tumors and combined the analysis with genes induced in metastatic cancer cell lines, which identified anoctamin 1 (ANO1) as a key driver of metastasis. ANO1 caused cholesterol accumulation by inhibiting LXR signaling and decreased cholesterol hydroxylation by downregulating the expression of cholesterol hydroxylase CYP27A1. ANO1 also regulated tumor cell-fibroblast cross-talk that contributed to inflammatory cytokine signaling (IL1ß) and metastasis. Through in silico analysis, the study identified a novel small-molecule inhibitor of ANO1 that decreased tumor burden at a metastatic site. These studies provide novel insights into the role of ANO1 in cellular cholesterol metabolism and associated signaling in mediating metastasis. See related article by Deng et al., p. 1851.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Anoctamina-1/genética , Anoctamina-1/metabolismo , Microambiente Tumoral , Colesterol , Proteínas de Neoplasias/metabolismo
13.
J Biol Chem ; 299(6): 104780, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37142220

RESUMO

The calcium-activated chloride channel TMEM16A is a potential drug target to treat hypertension, secretory diarrhea, and several cancers. However, all reported TMEM16A structures are either closed or desensitized, and direct inhibition of the open state by drug molecules lacks a reliable structural basis. Therefore, revealing the druggable pocket of TMEM16A exposed in the open state is important for understanding protein-ligand interactions and facilitating rational drug design. Here, we reconstructed the calcium-activated open conformation of TMEM16A using an enhanced sampling algorithm and segmental modeling. Furthermore, we identified an open-state druggable pocket and screened a potent TMEM16A inhibitor, etoposide, which is a derivative of a traditional herbal monomer. Molecular simulations and site-directed mutagenesis showed that etoposide binds to the open state of TMEM16A, thereby blocking the ion conductance pore of the channel. Finally, we demonstrated that etoposide can target TMEM16A to inhibit the proliferation of prostate cancer PC-3 cells. Together, these findings provide a deep understanding of the TMEM16A open state at an atomic level and identify pockets for the design of novel inhibitors with broad applications in chloride channel biology, biophysics, and medicinal chemistry.


Assuntos
Anoctamina-1 , Modelos Moleculares , Humanos , Masculino , Anoctamina-1/química , Anoctamina-1/metabolismo , Cálcio/metabolismo , Etoposídeo/farmacologia , Ligação Proteica , Estrutura Terciária de Proteína , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Simulação por Computador
14.
Commun Biol ; 6(1): 407, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-37055517

RESUMO

Mechanical force loading is essential for maintaining bone homeostasis, and unloading exposure can lead to bone loss. Osteoclasts are the only bone resorbing cells and play a crucial role in bone remodeling. The molecular mechanisms underlying mechanical stimulation-induced changes in osteoclast function remain to be fully elucidated. Our previous research found Ca2+-activated Cl- channel Anoctamin 1 (Ano1) was an essential regulator for osteoclast function. Here, we report that Ano1 mediates osteoclast responses to mechanical stimulation. In vitro, osteoclast activities are obviously affected by mechanical stress, which is accompanied by the changes of Ano1 levels, intracellular Cl- concentration and Ca2+ downstream signaling. Ano1 knockout or calcium binding mutants blunts the response of osteoclast to mechanical stimulation. In vivo, Ano1 knockout in osteoclast blunts loading induced osteoclast inhibition and unloading induced bone loss and. These results demonstrate that Ano1 plays an important role in mechanical stimulation induced osteoclast activity changes.


Assuntos
Canais de Cloreto , Osteoclastos , Anoctamina-1/genética , Anoctamina-1/metabolismo , Canais de Cloreto/genética , Osteoclastos/metabolismo , Transdução de Sinais/fisiologia
15.
Cancer Res ; 83(11): 1851-1865, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-36912612

RESUMO

SIGNIFICANCE: Metastatic cancer cells upregulate ANO1 to activate cell-intrinsic and -extrinsic mechanisms that alter cholesterol metabolism and stimulate fibroblasts, which can be targeted with ANO1 inhibitors to inhibit metastatic growth. See related commentary by Singh and Mehla, p. 1759.


Assuntos
Proteínas de Neoplasias , Neoplasias , Humanos , Proteínas de Neoplasias/metabolismo , Microambiente Tumoral , Linhagem Celular Tumoral , Fibroblastos/metabolismo , Colesterol/metabolismo , Anoctamina-1/metabolismo , Neoplasias/metabolismo
16.
Adv Exp Med Biol ; 1422: 279-304, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36988885

RESUMO

Chloride fluxes through homo-dimeric calcium-activated channels TMEM16A and TMEM16B are critical to blood pressure, gastrointestinal motility, hormone, fluid and electrolyte secretion, pain sensation, sensory transduction, and neuronal and muscle excitability. Their gating depends on the voltage-dependent binding of two intracellular calcium ions to a high-affinity site formed by acidic residues from α-helices 6-8 in each monomer. Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), a low-abundant lipid of the inner leaflet, supports TMEM16A function; it allows TMEM16A to evade the down-regulation induced by calcium, poly-L-lysine, or PI(4,5)P2 5-phosphatase. In stark contrast, adding or removing PI(4,5)P2 diminishes or increases TMEM16B function, respectively. PI(4,5)P2-binding sites on TMEM16A, and presumably on TMEM16B, are on the cytosolic side of α-helices 3-5, opposite the calcium-binding sites. This modular structure suggested that PI(4,5)P2 and calcium cooperate to maintain the conductive state in TMEM16A. Cholesterol, the second-largest constituent of the plasma membrane, also regulates TMEM16A though the mechanism, functional outcomes, binding site(s), and effects on TMEM16A and TMEM16B remain unknown.


Assuntos
Canais de Cloreto , Fosfatidilinositóis , Humanos , Canais de Cloreto/genética , Canais de Cloreto/química , Canais de Cloreto/metabolismo , Anoctamina-1/metabolismo , Cálcio/metabolismo , Colesterol , Canais de Cálcio , Células HEK293
17.
Commun Biol ; 6(1): 88, 2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36690845

RESUMO

Transient receptor potential vanilloid 3 (TRPV3) belongs to the TRP ion channel super family and functions as a nonselective cation channel that is highly permeable to calcium. This channel is strongly expressed in skin keratinocytes and is involved in warmth sensation, itch, wound healing and secretion of several cytokines. Previous studies showed that anoctamin1 (ANO1), a calcium-activated chloride channel, was activated by calcium influx through TRPV1, TRPV4 or TRPA1 and that these channel interactions were important for TRP channel-mediated physiological functions. We found that ANO1 was expressed by normal human epidermal keratinocytes (NHEKs). We observed that ANO1 mediated currents upon TRPV3 activation of NHEKs and mouse skin keratinocytes. Using an in vitro wound-healing assay, we observed that either a TRPV3 blocker, an ANO1 blocker or low chloride medium inhibited cell migration and proliferation through p38 phosphorylation, leading to cell cycle arrest. These results indicated that chloride influx through ANO1 activity enhanced wound healing by keratinocytes.


Assuntos
Cálcio , Cloretos , Animais , Camundongos , Humanos , Cálcio/metabolismo , Cloretos/metabolismo , Canais Iônicos/metabolismo , Queratinócitos/metabolismo , Cicatrização , Canais de Cátion TRPV/metabolismo , Anoctamina-1/metabolismo , Proteínas de Neoplasias/metabolismo
18.
Int J Mol Sci ; 24(2)2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36674697

RESUMO

Anoctamin1 (ANO1), a calcium-activated chloride channel, is involved in the proliferation, migration, and invasion of various cancer cells including head and neck squamous cell carcinoma, lung cancer, and prostate cancer. Inhibition of ANO1 activity or downregulation of ANO1 expression in these cancer cells is known to exhibit anticancer effects. Resveratrol, a natural polyphenol abundant in wines, grapes, berries, soybeans, and peanuts, shows a wide variety of biological effects including anti-inflammatory, antioxidant, and anticancer activities. In this study, we investigated the effects of two stereoisomers of resveratrol on ANO1 activity and found that cis- and trans-resveratrol inhibited ANO1 activity with different potencies. Cis- and trans-resveratrol inhibited ANO1 channel activity with IC50 values of 10.6 and 102 µM, respectively, and had no significant effect on intracellular calcium signaling at 10 and 100 µM, respectively. In addition, cis-resveratrol downregulated mRNA and protein expression levels of ANO1 more potently than trans-resveratrol in PC-3 prostate cancer cells. Cis- and trans-resveratrol significantly reduced cell proliferation and cell migration in an ANO1-dependent manner, and both resveratrol isomers strongly increased caspase-3 activity, PARP cleavage, and apoptotic sub-G1 phase ratio in PC-3 cells. These results revealed that cis-resveratrol is a potent inhibitor of ANO1 and exhibits ANO1-dependent anticancer activity against human metastatic prostate cancer PC-3 cells.


Assuntos
Neoplasias de Cabeça e Pescoço , Neoplasias da Próstata , Masculino , Humanos , Resveratrol/farmacologia , Células PC-3 , Anoctamina-1/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Proteínas de Neoplasias/metabolismo
19.
Br J Pharmacol ; 180(6): 775-785, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36444690

RESUMO

BACKGROUND AND PURPOSE: Pharmacological inhibitors of TMEM16A (ANO1), a Ca2+ -activated Cl- channel, are important tools of research and possible therapeutic agents acting on smooth muscle, airway epithelia and cancer cells. We tested a panel of TMEM16A inhibitors, including CaCCinh -A01, niclosamide, MONNA, Ani9 and niflumic acid, to evaluate their possible effect on intracellular Ca2+ . EXPERIMENTAL APPROACH: We recorded cytosolic Ca2+ increase elicited with UTP, ionomycin or IP3 uncaging. KEY RESULTS: Unexpectedly, we found that all compounds, except for Ani9, markedly decreased intracellular Ca2+ elevation induced by stimuli acting on intracellular Ca2+ stores. These effects were similarly observed in cells with and without TMEM16A expression. We investigated in more detail the mechanism of action of niclosamide and CaCCinh -A01. Acute addition of niclosamide directly increased intracellular Ca2+ , an activity consistent with inhibition of the SERCA pump. In contrast to niclosamide, CaCCinh -A01 did not elevate intracellular Ca2+ , thus implying a different mechanism of action, possibly a block of inositol triphosphate receptors. CONCLUSIONS AND IMPLICATIONS: Most TMEM16A inhibitors are endowed with indirect effects mediated by alteration of intracellular Ca2+ handling, which may in part preclude their use as TMEM16A research tools.


Assuntos
Cálcio , Canais de Cloreto , Cálcio/metabolismo , Anoctamina-1/metabolismo , Niclosamida/farmacologia , Sinalização do Cálcio
20.
Int J Biol Macromol ; 223(Pt A): 1145-1157, 2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36400205

RESUMO

Cancer chemotherapy drugs are widely criticized for their serious side effects and low cure rate. Therefore, adjuvant therapy as a combination with chemotherapy administration is being accepted by many patients. However, unclear drug targets and mechanisms limit the application of adjuvant treatment. In this study, we confirmed TMEM16A is a key drug target for lung adenocarcinoma, and narirutin is an effective anti-lung adenocarcinoma natural product. Virtual screening and fluorescence experiments confirmed that narirutin inhibits the molecular target TMEM16A, which is specific high-expression in lung adenocarcinoma. Molecular dynamics simulations and electrophysiological experiments revealed the precise molecular mechanism of narirutin regulating TMEM16A. The anticancer effect of narirutin and its synergistic effect on cisplatin were explored by cell proliferation, migration, and apoptosis assays. The signaling pathways regulated by narirutin were analyzed by western blot. Tumor xenograft mice experiments demonstrated the synergistic anticancer effect of narirutin and cisplatin, and the side effects of high concentrations of cisplatin were almost eliminated. Pharmacokinetic experiments showed the biological safety of narirutin is satisfactory in vivo. Based on the significant anticancer effect and high biosafety, naringin has great potential as a functional food in the adjuvant treatment of lung cancer.


Assuntos
Produtos Biológicos , Neoplasias Pulmonares , Humanos , Camundongos , Animais , Anoctamina-1/metabolismo , Anoctamina-1/farmacologia , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Movimento Celular , Neoplasias Pulmonares/patologia , Proliferação de Células , Cisplatino/metabolismo , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...